Контроллер заряда аккумулятора. Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает Что контроллер зарядки

Контроллер заряда является очень важным узлом системы, в которой электрический ток создают солнечные панели. Устройство управляет зарядкой и разрядкой аккумуляторных батарей. Именно благодаря ему, батареи не могут перезарядиться и разрядиться настолько, что восстановить их рабочее состояние будет невозможно.

Такие контролеры можно сделать своими руками.

Самодельный контроллер: особенности, комплектующие

Устройство предназначено для работы только , которая создает ток с силой, не более 4 А. Емкость аккумулятора, зарядкой которого , является 3 000 А*ч.

Для изготовления контроллера нужно подготовить следующие элементы:

  • 2 микросхемы: LM385-2.5 и TLC271 (является операционным усилителем);
  • 3 конденсатора: С1 и С2 являются маломощными, имеют 100n; С3 имеет емкость 1000u, рассчитан на 16 V;
  • 1 индикаторный светодиод (D1);
  • 1 диод Шоттки;
  • 1 диод SB540. Вместо него можно использовать любой диод, главное, чтобы он мог выдержать максимальный ток солнечной батареи;
  • 3 транзистора: BUZ11 (Q1), BC548 (Q2), BC556 (Q3);
  • 10 резисторов (R1 – 1k5, R2 – 100, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k). Все они могут быть 5%. Если хочется большей точности, то можно взять резисторы 1%.

Чем можно заменить некоторые комплектующие

Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять . Можно установить обычный диод, но его нужно правильно разместить.

Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно .

Читайте также: Особенности фонтанов на солнечных батареях

Если контроллер не будет использоваться в агрессивной среде, можно провести установку подстроечного резистора. Он дает возможность управлять напряжением. В агрессивной среде он долго не поработает.

При необходимости использовать контроллер для более сильных панелей нужно провести замену транзистора MOSFET и диода более мощными аналогами. Все остальные компоненты менять не нужно. Нет смысла устанавливать радиатор для регулирования 4 А. При установке MOSFET на подходящем теплоотводе устройство сможет работать с более продуктивной панелью.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору . Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Зарядка происходит периодически. При этом ее продолжительность зависит от того, каким является зарядный ток аккумуляторной батареи, и насколько мощные подключенные к ней устройства. Зарядка длится до тех пор, пока напряжение не станет равным 14 В.

Схема включается за очень короткое время. На ее включение влияет время зарядки С2 током, который ограничивает транзистор Q3. Ток не может быть больше 40 мА.

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Типы

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.

Для чего литий─ионному аккумулятору нужен контроллер зарядки?

Многие читатели сайта спрашивают о том, что такое контроллер заряда литий─ионного аккумулятора, и для чего он нужен. Этот вопрос кратко упоминался в материалах, где описывались различные типы литиевых аккумуляторов. Этот тип аккумуляторных батарей практически всегда имеет в своём составе контроллер зарядки, ещё называемый платой защиты Battery Monitoring System (BMS). В этой заметке подробнее рассмотрим, что это за устройство, и как оно функционирует.

Простейший вариант контроллера зарядки литий─ионных АКБ можно увидеть, если разобрать аккумулятор планшетного компьютера или телефона. Он состоит из банки (аккумуляторного элемента) и печатной платы защиты BMS. Это и есть контроллер зарядки, который можно видеть на фото ниже.

Основой здесь является микросхема контроллера защиты. Полевые транзисторы используются для раздельного управления защитой при зарядке и разрядке аккумуляторного элемента.

Назначение контроллера защиты в том, что он следит за тем, чтобы банка не заряжалась выше напряжения 4,2 вольта. Литиевый аккумуляторный элемент имеет номинальное напряжение 3,7 вольта. Перезаряд и превышение напряжения выше 4,2 вольта могут привести к тому, что элемент выйдет из строя.

В аккумуляторах смартфонов и планшетов плата BMS следит за процессом заряда и разряда одного элемента (банки). В аккумуляторах ноутбуков таких банок несколько. Обычно от 4 до 8.

Также контроллер следит за процессом разрядки аккумуляторного элемента. При падении напряжения ниже порогового (обычно 3 вольта) схема отключает банку от потребителя тока. В результате устройство, работающее от аккумулятора, просто выключается.
Среди прочих функций контроллера зарядки стоит отметить защиту от короткого замыкания. На некоторых платах защиты BMS устанавливается терморезистор для защиты аккумуляторного элемента от перегрева.

Платы защиты BMS для литий─ионных аккумуляторов

Контроллер, рассмотренный выше, является простейшим вариантом защиты BMS. На самом деле разновидностей таких плат гораздо больше и есть довольно сложные и дорогостоящие. В зависимости от сферы применения выделяют следующие виды:

  • Для портативной мобильной электроники;
  • Для бытовой техники;
  • Применяемые в возобновляемых источниках энергии.


Часто такие платы защиты BMS можно встретить в составе систем с солнечными батареями и в ветряных генераторах. Там, как правило, верхний порог срабатывания защиты по напряжению составляет 15, а нижний – 12 вольт. Сам аккумулятор в штатном режиме выдаёт напряжение 12 вольт. К аккумуляторной батарее подключается источник энергии (например, солнечная панель). Подключение выполняется через реле.

При увеличении напряжения на аккумуляторе более 15 вольт срабатывают реле и размыкают цепь заряда. После этого источник энергии работает на предусмотренный для этого балласт. Как говорят специалисты, в случае с солнечными панелями это может дать нежелательные побочные эффекты.

В случае ветряных генераторов BMS контроллеры применяются обязательно. Контроллеры зарядки для бытовой техники и мобильных устройств имеют существенные различия. А вот контроллеры аккумуляторов ноутбуков, планшетов и телефонов имеют одинаковую схему. Разница заключается только в количестве контролируемых аккумуляторных элементов.

Аккумулятор вместе с генератором являются устройствами, обеспечивающими автомобиль электропитанием. От степени зарядки батареи зависит успешный старт машины и работа приборов, входящих в электрическую сеть при выключенном двигателе. Поэтому важно следить за ее зарядкой. Для контроля зарядки предназначен контроллер заряда автомобильной АКБ. В статье описывается принцип действия устройства, дается инструкция по изготовлению своими руками.

Если не контролировать зарядку, то недозаряд аккумулятора грозит тем, что в один прекрасный момент может не завестись двигатель, особенно в зимний период. Проверить напряжение на клеммах устройства можно с помощью мультиметра. Если говорит контрольная лампа заряда аккумуляторной батареи на приборной панели, это говорит о том, что у батареи низкая зарядка. Но горение лампочки малоинформативно.

[ Скрыть ]

Встроенный контроллер

Благодаря техническому прогрессу повышается комфорт обслуживания и поездки на машине. Многие современные автомобили оснащены бортовыми компьютерами. Одна из его функций – показывать напряжение АКБ. Но такая роскошь доступна не всем водителям. На старых моделях порой установлен аналоговый вольтметр, но по его показаниям трудно судить о состоянии зарядки. Поэтому стали производить специальные аккумуляторных батарей. Они выпускаются как встроенными в аккумулятор, так и в виде отдельных устройств, которые подключаются к бортовому компьютеру.

Встроенными индикаторами обычно оснащаются батареи. Они представляют собой поплавковые индикаторы, которые часто называют гидрометрами. По их цвету можно определить степень заряженности АКБ и уровень электролита. Для контроля состояния аккумулятора достаточно индикации одной ячейки. Перед тем, как воспользоваться индикатором, следует слегка постучать по нему. Это необходимо для того, чтобы вышли пузырьки воздуха, которые могут помешать вести наблюдения. Таким образом, можно будет четко видеть цвет индикатора.

При анализе следует учесть то, что когда батарея начинает заряжаться, то плотность электролита увеличивается ближе к электродам. Над электродами повышение плотности происходит за счет диффузии. Индикатор находится над электродами, соответственно будет реагировать на плотность в этой части батареи. Это может стать причиной неточных результатов.

Даже при полной зарядке индикатор может оставаться черного цвета. Объясняется такая ситуация тем, что не успели перемешаться слои электролита большей плотности со слоями меньшей плотности. Процесс диффузии может длиться несколько дней.

Точную зарядку можно определить с помощью тестера.

Конструкция

Схема встроенного индикатора выглядит следующим образом:

Принцип действия

У большинства гидрометров одинаковый принцип действия, он основывается на трех положениях индикатора. Когда заряжается батарея, увеличивается плотность электролита. Благодаря этому зеленый шарик, выполняющий роль поплавка, всплывает по трубке и появляется в глазке индикатора. Обычно поплавок виден, если заряженность батареи превышает 65 %.


Если поплавок тонет в электролите, это означает, что плотность не отвечает норме и АКБ недостаточно заряжена. При этом глазок индикатора будет черного цвета. Такая ситуация говорит о том, что необходима подзарядка.


Существуют модели, в которых кроме зеленого шарика есть красный, поднимающийся по трубке при низкой плотности. В этом случае в глазке будет виден красный шарик.

Последним вариантом является низкий уровень электролита. В этом случае в глазок индикатора будет видна поверхность электролита. Это значит, что необходимо долить электролит или дистиллированную воду. Правда, в случае с необслуживаемым устройством, сделать это сложно.


Заводские контроллеры

Существуют промышленные устройства для контроля уровня . Рассмотрим некоторые из них.

Контроллер уровня зарядки DC-12 В представляет собой конструктор. Он подойдет тем, кто имеет знания по электротехнике. Устройство позволяет контролировать заряженность батареи и выполнять функцию реле-регулятора. Продается в виде набора деталей и собирается самостоятельно. Диапазон напряжений составляет от 2,5 до 18 В. Потребляемый ток – 20 мА. Размеры печатной платы: 43х20 мм (автор видео — DeXter Show).

Панель с индикатором от TMC пригодится автолюбителям, которые установили в свой автомобиль второй аккумулятор. Устройство состоит из алюминиевой панели, вольтметра и тумблера. С помощью тумблера осуществляется переключение между батареями.

Можно приобрести устройства контроля уровня заряда аккумулятора от фирмы Faria Euro Black Style, но у них очень высокая стоимость.

Инструкция по изготовлению

Если есть желание, знания по электронике и время, можно изготовить контроллер . Конструктивно устройство будет состоять из электронного блока, на корпусе которого будут расположены три диода красного, зеленого и синего цвета. Цвета диодов можно выбрать любые, главное, правильно оценивать полученные результаты.

Назначение данного устройства – контролировать работу автомобильного аккумулятора с напряжение электросети от 6 до 14 В. Этот прибор схож с тем, что продается в магазине. Речь идет о наборе DC-12 В, о котором упоминалось выше. Принцип действия обоих устройств одинаков.

Для изготовления контроллера понадобятся следующие детали:

  • для размещения компонент печатная плата;
  • транзисторы: ВС547 и ВС557;
  • резисторы: сопротивлением 1 кОм – 2, 220 Ом – 3, 2,2 кОм – 1;
  • диоды (стабилизаторы) на 9,1 и 10 В;
  • набор светодиодов RGB (красный, зеленый, синий).

Перед сборкой следует проверить, чтобы контакты соответствовали цвету светодиодов. Проверку можно выполнить с помощью тестера. Это можно сделать с помощью тестера. Монтируя компоненты, желательно светодиоды вывести на проводах длиной 5-20 см, а не припаивать их к плате. Такую конструкцию легче расположить на приборной панели автомобиля.

Сборка устройства осуществляется по следующей схеме:


При сборке следует размещать комплектующие на печатной плате как можно более компактно, чтобы он не занимали много места. После подключения к бортовой электросети контроллер будет показывать текущий уровень зарядки аккумулятора.

При этом он будет лишь сигнализировать об определенном уровне, не показывая конкретных значений:

  • если загорается светодиод красного цвета, это означает, что напряжение находится в пределах от 6 до 10 В — это критичный уровень;
  • если горит синий светодиод, то заряд составляет 11-13 В – это оптимальное значение, которое соответствует нормальной работе аккумуляторной батареи;
  • если аккумулятор полностью заряженный, загорается светодиод зеленого цвета.

Собранную панель рекомендуется устанавливать и подключать к бортовой сети на обратной стороне панели приборов, а на лицевую сторону вывести светодиоды на проводах. Если выполнять все работы аккуратно, то это не отразится на внешнем виде приборной доски.

Установка контроллера позволяет контролировать заряженность аккумуляторной батареи, что дает возможность вовремя подзаряжать АКБ и не даст попасть в ситуацию, когда не заводится двигатель из-за разряженной батареи.

Недорогой и простой в эксплуатации контроллер разработан специально для встраивания в аккумуляторные системы. Контроллер "прощает" ошибки при подключении, переполюсовка питания и аккумулятора не выведут из строя как сам аккумулятор, так и контроллер, минимум органов управления и индикации позволяет использовать контроллер даже любителю. Контроллер имеет два клеммника для удобства подключения источника питания и аккумулятора и два светодиода статуса для отображения состояния.


Технические характеристики

Описание работы

Контроллер работает в режиме постоянной подзарядки (буферный режим), подстроечный резистор на плате контроллера позволяет выставить напряжение окончания заряда в диапазоне от 13,4 до 13,9 вольт. Буферный режим заряда наиболее оптимален для продления срока эксплуатации аккумулятора, так как аккумулятор большую часть времени находится в максимально заряженном состоянии.


Для максимального срока эксплуатации аккумулятора цикл заряда должен длиться не менее 8-16 часов. Как правило, эта информация указывается производителями на аккумуляторе. Время заряда контроллером зависит от ёмкости аккумулятора.

Контроллер заряда имеет два светодиода. Зеленый светодиод информирует о том, что в данный момент происходит заряд аккумулятора. Контроллер автоматически определяет необходимый ток заряда. В процессе заряда, с приближением напряжения аккумулятора до установленного, ток заряда снижается. При снижении зарядного тока менее определённого уровня (см. параметр “Отключение индикации заряда при токе менее” в таблице Технические характеристики), зелёный светодиод отключается.


Красный светодиод информирует о том, что аккумулятор подключен в обратной полярности, заряд при этом не происходит.


При отключении питающего напряжения разряд аккумулятора через модуль не происходит.

Подключенный к зарядному устройству аккумулятор, с остаточным напряжением менее 10 В, контроллер определяет как неисправный и заряд не происходит.

При питании модуля от низкочастотного трансформатора с диодным мостом, на выход диодного моста необходимо установить конденсатор емкостью не менее 1000 мкФ.

С использованием нескольких модулей SCD0049 можно конструировать системы заряда для группы последовательно включенных аккумуляторов, без дополнительной схемы балансировки, при условии питания модулей от отдельных гальванически развязанных источников питания.

Встречайте наши новинки!

SCD0049-0.4A - Контроллер заряда 12 В свинцового аккумулятора

SCD0049-0.7A - Контроллер заряда 12 В свинцового аккумулятора