Сообщение о носителе информации диск. Виды носителей информации. Принцип записи информации на магнитный носитель

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Один из вариантов классификация носителей информации представлен на рис. 1.1.

Список носителей информации на рис. 1.1 не является исчерпывающим. Некоторые носители информации мы рассмотрим более подробно в следующих разделах.

Хранение информации - это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.

диск файл накопитель информация

ЛЕНТОЧНЫЕ НОСИТЕЛИ ИНФОРМАЦИИ

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

ДИСКОВЫЕ НОСИТЕЛИ ИНФОРМАЦИИ

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

Накопители на дисках наиболее разнообразны:

Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)

Накопители на оптических компакт-дисках:

CD-ROM (Compact Disk ROM)

Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем.Накопители на гибких магнитных дисках

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, так как интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого. Дискеты и сейчас используются, но уже достаточно редко. В основном для хранения различных ключей (например, при работе с системой клиент-банк) и для передачи различной отчетной информации государственным надзорным службам.

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема.

Этот вид носителя был особенно распространён в 1970-х - начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках», жаргонный вариант - флоповод, флопик, флопарь от английского floppy-disk или вообще "печенюшка"). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства - дисковод (флоппи-дисковод). Дискета обычно имеет функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Внешний вид 3,5” дискеты представлен на рис. 1.2.

В современном обществе можно выделить три основных вида носителей информации:

1) бумажный;

2) магнитный;

3) оптический.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) - около 3500 символов

Страница учебника - 2000 символов

Гибкий магнитный диск – 1,44 Мб

Оптический диск CD-R(W) – 700 Мб

Оптический диск DVD – 4,2 Гб

Флэш-накопитель - несколько Гб

Съемный жесткий диск или Жесткий магнитный диск– сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Достоинства и недостатки хранения информации во внутренней и внешней памяти. (Достоинство внутренней памяти - быстротавоспроизведения информации, а недостаток- со временем часть информации забывается. Достоинство внешней памяти- большие объемы информации хранится долго, а недостаток- для доступа к определенной информации требуется время (например, чтобы подготовить реферат по предмету необходимо найти, проанализировать и выбрать подходящий материал))

Архив информации

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации - это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл - это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла. Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых степень сжатия может достигать 5 - 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей - 60 - 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) - помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде. Разархивация (распаковка) - процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память;

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами .

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том - это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько дискет.

Основными характеристиками программ-архиваторов являются:

скорость работы;

сервис (набор функций архиватора);

степень сжатия – отношение размера исходного файла к размеру упакованного файла.

Основными функциями архиваторов являются:

· создание архивных файлов из отдельных (или всех) файлов текущего каталога и его подкаталогов, загружая в один архив до 32 000 файлов;

· добавление файлов в архив;

· извлечение и удаление файлов из архива;

· просмотр содержимого архива;

· просмотр содержимого архивированных файлов и поиск строк в архивированных файлах;

· ввод в архив комментарии к файлам;

· создание многотомных архивов;

· создание самораспаковывающихся архивов, как в одном томе, так и в виде нескольких томов;

· обеспечение защиты информации в в архиве и доступ к файлам, помещенным в архив, защиту каждого из помещенных в архив файлов циклическим кодом;

· тестирование архива, проверка сохранности в нем информации;

· восстановление файлов (частично или полностью) из поврежденных архивов;

· поддержки типов архивов, созданных другими архиваторами и др.

Основные виды носителей информации

Носители информации: живые существа, неживые объекты и структуры, сигнал, знак, символ. Любой объект несёт какую-либо информацию о себе и окружающих его предметах, то есть является носителем информации.

Существует представление, что носители информации обладают вещественными, материальными свойствами и свойствами отношений. Первые подразумевают свойства веществ, из которых изготовлены носители; вторые – свойства процессов и полей, с помощью которых существуют носители и третьи – элементные (видовые) свойства, позволяющие выделять одни носители среди других, например по форме и размеру. Вещественные носители делят на: локальные (компьютер), отчуждаемые (переносимые диски и дискеты) и распределённые (линии связи). В отношении последних не существует однозначного мнения потому, что каналы связи можно представить в виде носителей данных, но одновременно они являются средой их передачи.

Обычно под носителями информации подразумевают общепринятое название их формы, то есть: бумага (книга, брошюра и т.п.), пластинка (грампластинка, фотопластинка), пленка (фото, киноплёнка, рентгеновская плёнка) аудиокассета, дискета, микроформа (фотоплёнка, микрофильм, микрофиша), видеокассета, компакт-диск (CD , DVD ) и т.д.

Издавна известны, такие носители, как: камень (наскальные рисунки, каменные плиты), глиняные таблички, пергамент, папирус, береста и другие. Затем появились следующие носители: бумага, пластмасса, фотоматериалы, магнитные и оптические материалы и другое.

Ныне они делятся на: традиционные и машиночитаемые. Под традиционными будем понимать следующие носители информации:бумага, холст, пластмасса (грампластинка), магнитная лента (аудио и видеокассета), фотографические материалы (фотопленка, фотопластина, фотоотпечаток, микроноситель) и т.п. К машиночитаемым носителям отнесём: дискеты (гибкие магнитные диски), жёсткие магнитные и компактные (оптические, магнитооптические и иные) диски, флеш-карты и другие носители информации, предназначенные для использования в компьютерных устройствах, комплексах, системах и сетях. Информация записывается на носитель посредством изменения физических, химических или механических свойств запоминающей среды.

Вариант классификации носителей информации, используемых в компьютерной технике, представлен на Рис. 5-1.

Рис. 5-1. Классификация носителей информации, используемых

в компьютерной технике

Отметим, что такое деление условно. Так, например, с помощью специальных устройств на компьютерах можно работать с обычными аудио и видеокассетами, а устройства для записи и долговременного хранения данных (стримеры) используют общеизвестные магнитные носители (магнитные ленты) и т.п. Поэтому к традиционным носителям будем относить данные аналогового характера, а к машиночитаемым, то есть используемым в компьютерах, – цифровые данные или электронные информационные ресурсы (ЭИР).

Дадим им краткую характеристику.

Магнитооптический диск (МО) диск заключён в пластиковый конверт (картридж). МО-диск является универсальным, оперативным, высоконадёжным устройством переноса и хранения информации. Характеризуются высокой плотностью записи информации. Диски диаметром 3.5" имеют объём 128 Мб – 1,3 Гб, а диаметром 5.25" – от 2,3 до 9,1 Гб. Скорость вращения диска – 2000 об/мин.

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи - CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Тип накопителя Преимущества Недостатки
Жесткий диск Большой объём хранимой информации. Высокая скорость работы. Дешевизна хранения данных (в расчете на 1 Мбайт) Большие габариты. Чувствительность к вибрации. Шум. Тепловыделение
Оптический диск Удобство транспортировки. Дешевизна хранения информации. Возможность тиражирования Небольшой объём. Нужно считывающее устройство. Ограничения при операциях (чтение, запись). Невысокая скорость работы. Чувствительность к вибрации. Шум
Флеш-память Высокая скорость доступа к данным. Экономное энергопотребление. Устойчивость к вибрациям. Удобство подключения к компьютеру. Компактные размеры Ограниченное количество циклов записи

Допечатные процессы предъявляют особые требования к регистрирующим средствам, использующимся для хранения информации. Такие требования являются следствием не только постоянных потребностей, связанных с увеличением объемов сохраняемых данных, обрабатываемых в процессе производства печатной продукции. Память имеет исключительное значение для постоянного резервирования данных внутри сети рабочих станций, а также для безопасной пересылки и архивирования данных. Несмотря на возросшие возможности передачи данных через сети или через Интернет, среды для сохранения данных будут продолжать играть важную роль в обмене информацией между заказчиком и исполнителем.

Благодаря новым технологиям и производственным процессам емкость носителей, предназначенных для хранения информации, постоянно увеличивается. Имеются предпосылки, что этот рост составит около 80% в год. Суть увеличения объемов хранения данных включает, вероятно, совокупность следующих факторов: повышение плотности записи, числа дорожек и оптимальное использование поверхности носителя. Супердиск с объемом памяти 120 Мб действительно соответствует данной задаче, несмотря на то, что по внешнему виду он является почти таким же, как гибкий 3,5-дюймовый диск. Однако супердиск по объему памяти превосходит последний почти в 83 раза. Сведения об объемах памяти различных носителей приведены в табл. 5.

Классификация носителей данных

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители. Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

  • распространение информации: носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;
  • архивирование: носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);
  • резервирование (Backup) или передача данных: носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.
CD и DVD (ROM, R, RW)

CD-ROM был первоначально создан для того, чтобы распространять большие объемы информации (например, музыку и т.д.) за умеренную плату. Между тем он стал наиболее используемым носителем информации и для меньших объемов данных, например, при личном пользовании. В обозримом будущем CD-ROM могут быть заменены на DVD-ROM. DVD имеет емкость памяти от 4,7 до 17 GB. DVD-ROM может использоваться для распространения программных продуктов, мультимедиа, банков данных и для записи художественных фильмов. Увеличение объема памяти здесь стало возможным благодаря технологии двойного слоя. Она позволяет наносить на верхнюю и нижнюю стороны диска по два накопительных слоя, которые разделяются полуотражающим промежуточным слоем. При считывании информации лазер "прыгает" между обоими накопительными слоями.

Компакт-диск, кратко называемый CD-R (или, соответственно, DVD-R), представляет собой оптическую пластину для одноразовой записи в формате 5,25 дюйма с большой плотностью. Запись на такой диск может быть произведена только один раз в специальном записывающем устройстве. После этого информацию можно считывать посредством обычного дисковода CD-ROM. Типичная область применения – это передача информации в ограниченном количестве.

Более гибким, но менее распространенным является CD-RW (Rewritable). Этот сменный носитель информации может быть перезаписан заново до 1000 раз. Нанесенный слой при записи в результате термооптического процесса изменяет свою структуру с кристаллической на аморфную. В результате на этих местах изменяются отражающие свойства несущего слоя. Интенсивность излучения, соответствующая отражению от светлых или темных участков, преобразуется в бинарные числа 1 или 0.

Сменные накопители

Работа сменного накопителя основывается на использовании магнитных слоев, служащих для многократной записи информации.

Сменные диски SyQuest.

Производитель SyQuest, начав с выпуска дисков емкостью 44 Мб, довел со временем их память до 1,5 Гб. При этом увеличение памяти потребовало применения и нового дисковода. Эти сменные магнитные диски стали часто используемыми носителями данных в допечатных процессах. Картриджи данных. Начиная с 70-х годов эти магнитные накопители относятся к основным средам для резервирования данных. Главным образом они используются для резервного копирования данных на жестком диске персональных компьютеров (PC). Часто при резервировании в сети система автоматически подключает несколько картриджей для обработки накопителей со сменными дисками. Картриджи выпускаются в форматах 5,25 и 3,5 дюйма. Дисководы, предлагаемые различными изготовителями, бывают встроенными или присоединенными к персональному компьютеру. По сравнению с гибкими дисками скорость пересылки данных у картриджей выше, однако она меньше, чем у жестких дисков. Магнитный ленточный носитель данных (ширина ленты 4 или 8 мм). Среди множества четырех- и восьмимиллиметровых ленточных носителей информации имеются такие, которые в соответствии с новыми разработками отличаются более надежной защитой данных. Это свойство достигнуто благодаря тому, что уменьшено воздействие на подобные ленты статического электричества. Четырехмиллиметровые ленточные носители информации имеют емкость до 4 Гб. У восьмимиллиметровых носителей – 5 Гб. Они используются в банках данных, когда на магнитных лентах должны автоматически сохраняться большие массивы информации.



SuperDisk, ZIP, JAZ. Гибкий диск 3,5 дюйма является наиболее распространенным накопительным носителем в мире. В настоящее время в разработке находятся две системы: технология ZIP фирмы Iomega и SuperDisk (ранее называвшийся LS-120) фирмы Imation.

SuperDisk предоставляет возможность размещения информации объемом 120 Мб и почти не отличается внешне от традиционной 3,5-дюймовой дискеты. Носитель информации недорогой и "совместим в обе стороны", т.е. на новых дисководах можно также считывать и записывать классические дискеты 1,44 Мб.

Дискеты ZIP фирмы Iomega имеют объем от 100 до 250 Мб и по цене сопоставимы с носителем SuperDisk. Дискеты ZIP в настоящее время очень распространены в издательском деле, из чего можно сделать заключение о соответствующей потребности в сменных носителях такого вида. ZIP не "совместим в обе стороны", а дисковод может обрабатывать только носители ZIP. Время доступа к информации у диска ZIP меньше, чем у диска SuperDisk.

Дискеты 3,5 дюйма "JAZ" фирмы Iomega имеют объем хранения информации до 2 Гб. Магнитооптический диск (CD-MO). Магнитооптические носители, кратко называемые MO, получили широкое распространение. В пользу этой технологии однозначно говорит объем памяти: 640 Мб на носителе 3,5 дюйма и 2,6 Гб на носителе 5,25 дюйма. Их развитие идет быстро. Уже сегодня такие изготовители, как Sony и Philips, говорят об объеме 2,6 Гб у носителей 3,5 дюйма и 10,4 Гб у носителей 5,25 дюймо вого формата. Дисководы MO достигают скорости передачи данных 4 Мб/с, а среднее время доступа составляет менее 25 мс. Размещение и запись данных осуществляются посредством лазера.



Жесткие диски. Наконец следует упомянуть жесткие диски, которые входят в стандартную комплектацию практически каждого компьютера. Объем памяти этих носителей информации постоянно увеличивается и в последнее время достиг около 80 Гб для 31/2’’ диска.