Как из блока питания компьютера сделать зарядное устройство. Как из блока питания компьютера сделать зарядное устройство автомобиля. Набор необходимых инструментов и материалов

Зарядное устройство из компьютерного блока питания для автомобильной аккумуляторной батареи можно собрать самостоятельно. И такой агрегат пользуется популярностью. Ведь на его подготовку требуется минимум средств. При этом получается эффективное ЗУ.

На состояние автоаккумуляторной батареи обращают внимание в зимний период. Ведь в это время плотность электролитического состава меняется, быстро теряется заряд. В результате, запуск двигателя усложняется. Для решения этой проблемы используют зарядные устройства.

Разработкой и сборкой зу для акб занимаются многие компании. Поэтому подобрать модель с требуемыми параметрами сможет каждый водитель. Такие модели отличаются обширным функционалом: тренировка источника питания, восстановление заряда, прочее. Их стоимость достаточно высока.

Поэтому автолюбителей интересует зарядное устройство для автомобильного аккумулятора, которое сконструировано из подручных агрегатов и элементов.

Преимущества самостоятельной сборки

  1. Использование подручных материалов, элементов. Поэтому расходы на изготовления сокращаются.
  2. Небольшой вес. Он не превышает 1,5–2 кг. Поэтому перемещать самодельный агрегат для восстановления заряда батареи несложно.
  3. Постоянное охлаждение. В состав блока питания включен вентилятор. Поэтому вероятность нагрева минимальна.

Какие сложности?

  1. Сконструированный преобразователь не всегда работает тихо. Периодически он издает звуки, которые похожи на звон, шипение.
  2. Не допускается контакт самодельной зарядки и корпуса автотранспортного средства. Если заряжаем с включением в сеть, то контакт провоцирует поломку преобразователя, КЗ.
  3. Подключение токопроводящих выводов аккумуляторной батареи к проводам выполняется точно. Если на этом этапе допущены ошибки, то вторичные цепи переделанного блока питания в зарядное устройство выходят из строя.
  4. Все контакты и элементы перед подключением проверяются. Только после этого компьютерный блок питания используется для зарядки.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Основные этапы изготовления ЗУ

Перед тем как сделать из бп компьютера надежный зарядник, изучаются требования техники безопасности, особенности работы с такими агрегатами. Ведь в первичных цепях блока питания пк присутствует напряжение.

Подготавливаем блок питания. Допускается использование отличающихся по мощности моделей. Чаще всего выполняется переделка компьютерного БП, мощность которого составляет 200–250 Вт.

После выбора модели выполняются последующие действия:

  • Из блока питания компьютера откручиваются болтики. Такие действия необходимы для последующего демонтажа крышки.
  • Определение сердечника, который входит в состав импульсного трансформатора. Его измеряют. Полученное значение удваивают. Для каждого элемента этот параметр индивидуален. При проведении тестов удалось выявить, что для получения мощности в 100 Вт требуется 0,95–1 см2. Ведь зарядка источника питания эффективна, если выдает 60–70 Вт.
  • В состав многих моделей БП входит такая схема, как TL494. Подобная схема вводится в состав разнообразных БП, которые представлены на продажу.

Подготовка схемы

Для подготовки зарядного устройства из компьютерного блока питания своими руками требуются определенные компоненты цепи (их отличительная особенность — +12В). Все остальные элементы изымаются. Для этого используют паяльник. Для упрощения процесса изучаются схемы, которые присутствуют на специальных порталах. На них изображены основные элементы, которые потребуются для БП.

Цепи с такими показателями, как -12В, -/+5 В, изымаются. Демонтируется и переключатель, при помощи которого изменяется напряжение. Выпаивается и схема, которая требуется для сигнала запуска.

Сделать зарядное устройство из БП несложно. Но для этого потребуются резисторы (R43 и R44), которые причислены к опорному типу. Показатели резистора R43 изменяются. В случае необходимости напряжение выходное меняется.

Специалисты рекомендуют заменять R43 на 2 резистора (переменный тип — R432, постоянный тип — R431). Внедрение таких резисторов облегчает процесс создания регулируемого элемента. С его помощью проще изменять силу тока, а также выходное напряжение. Это требуется для сохранения работоспособности автоаккумулятора.

Решая, как переделать БП, стоит сосредоточиться на конденсаторе. На выходной части выпрямителя сосредотачивается стандартный конденсатор. Мастера проводят его замену на элемент, который отличается большими показателями напряжения. Так, часто пользуются конденсатором марки С9.

Рядом с вентилятором, который используется для обдува, сосредотачивается резистор. Его заменяют резистором, который выделяется большим сопротивлением.

При подготовке ЗУ для аккумулятора меняется и расположение вентилятора. Ведь воздушная масса должна поступать в подготавливаемый блок питания.

Со схемы ликвидируют дорожки, которые предназначены для соединения массы, фиксации платы непосредственно к шасси.

Сконструированный блок питания с регулировкой подводят к сети с переменным током. Для этих целей используют стандартную лампу накаливания (производительность составляет 40–100 Вт).

Такие действия выполняются для того, чтобы проверить, насколько эффективная схема получилась. Без предварительного тестирования сложно установить, перегорит ли БП с заданной мощностью при резких изменениях напряжения.

Для правильной настройки БП для автомобильной аккумуляторной батареи требуется соблюдение определенных правил.

  • Введение индикаторов. Для отслеживания того, насколько зарядился автомобильный аккумулятор, используются индикаторы. В состав схемы вводят цифровые или же стрелочные индикаторы. Их легко приобрести в специализированных магазинах или же демонтировать со старой техники. Допускается введение нескольких индикаторов, с помощью которых отслеживается степень заряда, напряжение на токопроводящих выводах.
  • Корпус с креплением или ручками. Наличие такой детали способствует упрощению процесса эксплуатации ЗУ из БП.

К сборке ЗУ из БП портативного компьютера допускается при условии, что есть определенный опыт, знания в области электроники. Проводить какие-либо мероприятия, если нет соответствующей подготовки, запрещено. Ведь в процессе нужно контактировать с токопроводящими выводами, элементами, на которые подается напряжение, ток.

Видео про сборку зарядного из БП компьютера для ватомобильного акб

Введение.

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

Вариант 1.

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

По пунктам:

Стадия разрушения на этом окончена, пора переходить к созиданию.


По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:

В итоге, что мы имеем?

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:

Вариант 2.

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

План действий:


Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

Вариант 3.

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.

Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо .

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

Вот готовая продукция:

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

Тогда позвольте представить:

Вариант 4.

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

А это внутренности блока в сборе и внешний вид:

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

Заключение.

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.

Кота от всего сердца поздравляю с юбиелеем! В его честь, кроме статьи, ещё был заведён новый жилец - очаровательная серая киска Маркиза.

Схема простой переделки блока питания ATX, для возможности использовать его как зарядное устройство автоаккумулятора. После переделки получится мощный блок питания с регулировкой напряжения в пределах 0-22 В и тока 0-10 А. Нам понадобится обычный компьютерный БП ATX сделанный на микросхеме TL494. Для пуска никуда не подключенного БП типа АТХ необходимо на секунду закоротить зеленый и черный провода.

Выпаиваем из него всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Кроме того, нужно отсоединить от схемы ножки 15 и 16 - это второй усилитель ошибки, который мы используем для канала стабилизации тока. Также нужно выпаять цепь питания, соединяющую выходную обмотку силового трансформатора от + питания TL494 , она будет питаться только от маленького «дежурного» преобразователя, чтобы не зависеть от выходного напряжения БП (у него есть выходы 5 В и 12 В). Дежурку лучше немного перенастроить подобрав делитель напряжения в обратной связи и получив напряжения 20 В для питания ШИМ и 9 В для питания измерительно-регулировочной схемы. Приводим принципиальную схему доработки:

Выпрямительные диоды соединяем с 12-вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить диоды помощнее, чем те, которые обычно стоят в 12-вольтовой цепи. Дроссель L1 делаем из кольца от фильтра групповой стабилизации. Они разные по типоразмеру в некоторых БП поэтому намотка может отличатся. У меня получилось12 витков проводом диаметра 2 мм. Дроссель L2 берём из цепи 12 Вольт. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях почти от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать сигналы управления на ШИМ TL494. Резисторы VR1 и VR2 задают опорные напряжения. Переменный резистор VR1 регулирует выходное напряжение, VR2 - ток. Токоизмерительный резистор R7 на 0.05 ом. Питание для ОУ берём с выхода «дежурных» 9В БП компьютера. Нагрузка подключается к OUT+ и OUT-. В качестве вольтметра и амперметра можно использовать стрелочные приборы. Если регулировка тока в какой-то момент не нужна, то VR2 просто выкручиваем на максимум. Работа стабилизатора в БП будет так: если, например, установлено 12 В 1 А, то если ток нагрузки меньше 1 А - стабилизируется напряжение, если больше - то ток. В принципе, можно перемотать и выходной силовой трансформатор, выкинутся лишние обмотки и можно уложить более мощную. При этом также рекомендую и выходные транзисторы поставить на больший ток.

На выходе нагрузочный резистор где-то на 250 ом 2 Вт параллельно C5. Он нужен чтобы блок питания без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 (шунта) включён. Теоретически можно получить до 25 вольт при токе в 10 А. Заряжать устройством можно как обычные 12 В аккумуляторы от автомобиля, так и небольшие свинцовые, что стоят в ИБП.

Многие люди, приобретая новую компьютерную технику, выкидывают на помойку свой старый системный блок. Это довольно недальновидно, ведь в нем могут находиться еще работоспособные комплектующие , которые можно использовать для других целей. В частности, речь идет о блоке питания компьютера, из которого можно .

Стоит отметить, что затраты на изготовление своими руками минимальны, что позволяет существенно сэкономить свои денежные средства.

Блок питания компьютера представляет собой преобразователь напряжения, соответственно +5, +12, -12, -5 В. Путем определенных манипуляций, можно из такого БП сделать своими руками вполне рабочее зарядное устройство для своего автомобиля. Вообще, зарядки бывают двух типов:

Зарядные устройства со множеством опций (пуск двигателя, тренировка, подзарядка и т.д.).

Устройство для подзарядки АКБ — подобные зарядки нужны для автомобилей, у которых небольшой километраж между пробегами .

Нас интересует именно второй тип зарядных устройств, потому что большинство транспортных средств эксплуатируются короткими пробегами, т.е. автомобиль завели, проехали определенное расстояние, а затем заглушили. Подобная эксплуатация приводит к тому, что у аккумуляторной батареи автомобиля довольно быстро заканчивается заряд, что особенно характерно для зимнего времени. Поэтому и оказываются востребованными подобные стационарные агрегаты, с помощью которых можно очень оперативно зарядить АКБ, вернув его в рабочее состояние. Сама зарядка осуществляется при помощи тока порядка 5 Ампер, а напряжение на клеммах колеблется от 14 до 14,3 В. Мощность зарядки, которая рассчитывается путем умножения значений напряжения и тока, может быть обеспечена из блока питания компьютера, ведь средняя мощность его составляет порядка 300-350 Вт.

Переделка компьютерного БП в зарядное устройство

Здравствуйте. Товарищ подогнал мне плату со старого AT блока питания, так что сегодня речь пойдет о переделке компьютерного блока питания в зарядное устройство. Моя задача настроить выход на напряжение 14,4В и сделать регулятор тока до 6А. Такой зарядное устройство отлично подойдет для автомобильных стартерных аккумуляторов до 80A ч.
Плата долгое время пылилась на полках в гараже, поэтому пыль легла хорошим слоем. Часть деталей отсутствует, плата сломана пополам

В первый раз вижу такую удобную плату для переделки в зарядное. Лишних деталей не так много, ШИМ стоит, который является полным аналогом TL494, так что много время переделка не займет.


Подался в интернет в поисках подходящей схемы. Схем похожих валом, но самая подходящая вот она.


Схема отличная, но надо вырезать все лишнее. Убрал цепи шин 5В,3В,-5-12В, оставил только 12В, цепь PG тоже убрал.

После переделок схема выглядит примерно так.

А блок питания постепенно менялся, ремонтировался и модернизировался. Ну первым делом очистил плату от загрязнений, снял лишние детали и на шину 12В подал 15В от . На развязывающем трансформаторе есть прямоугольные импульсы, значит генератор работает исправно.


Проверил что происходит на силовых транзисторах. Осциллограф слабый и криминального ничего не показал. Кто не знает, что за осциллограф, почитайте о нем статью .


Ну и проверю сами силовые ключи с помощью мультиметра.




Плата была немного сломана и пришлось небольшие перемычки кинуть. Далее смотал старый дроссель и заново проложил обмотку на 5 витков больше, чем была обмотка 12В. Припаял пока одну емкость 25В 2200мкФ и заменил номинал резистора по схеме R30 . Резистор подбирал следующим образом, подключил 14,4В на шину 12В, замерил напряжение на второй ноге 2,56В TL494, вместо R30 поставил переменный 20 кОм и вращая добился 2,56В на первой ноге ШИМ, затем переменный резистор заменил на постоянный.

Поставил радиатор на место и конденсаторы нашел в коробке 470мкФ 200В в первичных цепях, так же проверил диодный мост, предохранитель и резистор заменил на 1Ом 10Вт. Блок готов к и надеюсь увидеть 14,4В на выходе.


Питание уже есть, лампа вспыхнула и погасла, спираль не подсвечивает и на выходе есть искомые 14,4В.


Микросхема питается от 24В, так и должно быть.

Попробую нагрузить на нихромовую спираль 1,5Ом. Ток на старте был 10А, но упал до 9,4А.


При такой нагрузке на самой плате 14,4В, на клемах на вольт меньше за счет просадки в кабеле. Общая мощность где то 150Вт. Можно грузить еще, но обмотка рассчитана примерно на 5А, поэтому от блока буду брать только 6А 🙂
Кстати во время испытаний пару раз клемы выхода соединялись и блок уходил в защиту. Схема перезапускается после прерывания питания от сети 220В, это защита на двух транзисторах от сверх допустимой мощности.
Теперь нужно сделать регулятор тока от 0 до 6А. Нужно изменить схему, добавит 5 деталек, на столе под нагрузкой 6А все выглядит так.


Полностью готовая плата. В корпус устанавливать не буду, положу на полку до лучшего времени

Ну и добавлю полностью готовую схему после всех переделок.

15 ногу отрезал от ИОН 5В и на проводке припаял напряжение с делителя. В качестве шунта использовал резистор 25Вт 0,05Ом. Место шунта на схеме не очень удачно выбрано, так как учитываться будет ток потребления самой платы. Что бы зарядка не уходила в защиту при крайнем нижнем положении переменного резистора, между резистором и общим минусом впаял резистор 150 Ом. Делителем, который питается от средней ножки переменного резистора, выставляется максимальный ток. То есть, если на шунте 0,05Ом при 6А падает 0,3В, то на делителе с 5 вольт должно получиться 0,3В

На этом переделка закончена, спасибо за внимание. Хотя нужно бы добавить сюда защиту от переполюсовки, но это другая история.

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства


Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку